If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=2800
We move all terms to the left:
x^2-(2800)=0
a = 1; b = 0; c = -2800;
Δ = b2-4ac
Δ = 02-4·1·(-2800)
Δ = 11200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11200}=\sqrt{1600*7}=\sqrt{1600}*\sqrt{7}=40\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{7}}{2*1}=\frac{0-40\sqrt{7}}{2} =-\frac{40\sqrt{7}}{2} =-20\sqrt{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{7}}{2*1}=\frac{0+40\sqrt{7}}{2} =\frac{40\sqrt{7}}{2} =20\sqrt{7} $
| x−23=78 | | .3a−32=4 | | (5x-2)+5=0 | | P(-4)=-2x+3 | | x-(0,10x)=12 | | x-(0.10x)=12 | | 3x+5x+4–x+7=11 | | x+(x/100)*7=20 | | 35+3x(-)11=23 | | 50=5x+6-x | | 5=(10x^2) | | 3x+15=333x+15-15=333x=33=x=11 | | x-5/11=0 | | x=35x+25 | | 42-14g=-4g+12 | | 42-14g=4g+12 | | 8x2+40x+50=0 | | 2x+.25x=224 | | 20+14a=9a | | 18+4h=-5h | | R(x)=5x,C(x)=0.05x^2+0.3x+6 | | -x+63=242 | | 512-x=451 | | 23x2+19x-12=5688 | | 64+x÷6=12 | | 2x-6=350-5x | | 6(x+2)-3(2x-3)=51 | | j/9=8 | | 12/t=2 | | x/0.65=10000 | | x*0.65=10000 | | 4-1/3z=-7+6 |